GAMMA GARP 100
Pulses & Pulse Cycles Overview 7.1

/7 GARP

7.1 Overview

The module PulGARP, which contains the class GARP, facilitates the use of GARP pulse cycles
in GAMMA nmr simulations. Class GARP contains parameters which define how GARP cycles
isto beimplemented and provides functionsfor building GARP based waveforms, composite puls-
es, and pulsetrains.

7.2 Chapter Contents

7.2.1 GARP Section Listing

Overview page 7-100
Constructors and Assignment page 7-102
Access Functions page 7-104
GARP-1 Functions page 7-106
Propagator Functions page 7-108
Input/Output Functions page 7-109
Auxiliary Functions page 7-111
Description page 7-116
Chapter Source Codes page 7-130

7.2.2 GARP Function Listing
GARP-1 Functions

GARP - Construction page 7-102
= - Assignment page 7-102
Access Functions
channel - GARP rf channel (Inherited PulPar) page 2-15
strength - GARP rf strength (Inherited PulPar) page 2-15
phase - GARP rf phase (Inherited PulPar) page 2-15
offset - GARP rf offset (Inherited PulPar) page 2-15
phase - GARP rf phase page 7-104
offset - GARP rf offset page 7-105
GARP-1 Functions
WF - GARP-1 Waveform page 7-106
WF _GARP1 - GARP-1 Waveform page 7-106
PCmp - GARP-1 Composite Pulse page 7-106
PCmpGARP1 - GARP-1 Composite Pulse page 7-106
CycGARP1 - GARP-1Pulse Train page 7-107

Scott Smith March 13, 1998

GAMMA GARP 101
Pulses & Pulse Cycles Chapter Contents 7.2

I nput/Output Functions

print - Output GARP definitions page 7-109
<< - Output GARP definitions page 7-109
7.2.3 GARPFigures& Tables Listing

Basic GARP 25 Step Sequence- page 7-116
Reading GARP Parameters- page 7-120
13C Decoupled Spectrum Using GARP-1- page 7-122
13C Coupled Spectrum, Zero Strength GARP-1- page 7-122
13C GARP-1 Decoupling Versus RF-Field Strength- page 7-124
7.2.4 GARP Examples

Reading GARP Parameters page 7-120
GARP-1 Decoupling page 7-121
GARP-1 Decoupling vs. Field page 7-123
GARP-1 Decoupling Praofile page 7-125
7.25 GARP Programs

GarpWFO.cc Generate Plot of GARP-1 25 Step Sequence page 7-130

Scott Smith

March 13, 1998

GAMMA GARP 102
Pulses & Pulse Cycles Chapter Contents 7.2

7.3 Constructorsand Assignment

731 GARP

Usage:
#include <PulGARP.h>
GARP()
GARP(double gB1, const String& ch, double ph=0, double off=0);
GARP(const GARP& GRP)
Description:
The function GARP is used to create a GARP parameter container.
1. PulGARP() - Creates an “empty” NULL GARP parameter. Can be later filled by an assignment.
2. PulGARP(double gB1, const& ch, double ph, double off) - Sets up GARP for having an rf-field strength
of gB1 Hz on the channel specified bly. GARP will be applied with an overall phasepbfdegrees and
an offset obff Hz. Called with another PUIGARP quantity this function constructs an identical PUIGARP
to the inputPWF1.

3. PulGARP(const PUIGARP &PWF1) - Called with another PUIGARP quantity this function constructs an
identical PUIGARP to the inputPWF1.

Return Value:
GARRP returns no parameters. It is used strictly to create a GARP parameter container.

Examples:

PUulGARP PG;
PUlGARP PG1(538.9, “13C");
PulGARP PG3(PG1);

See Also: =
7.3.2 =

Usage:

#include <PulGARP.h>
void GARP operator = (PulGARP &PWF1)

Description:

The unary operator = (the assignment operator) allows for the setting of one GARP to another GARP. If the
GARP being assigned to exists it will be overwritten by the assigned GARP.

Return Value:

None, the function is void

Scott Smith March 13, 1998

GAMMA GARP 103
Pulses & Pulse Cycles Chapter Contents 7.2

Example:

PUlGARP PG1(538.9, “13C");
PulGARP PG3 = PG1;

See Also: PUIGARP

Scott Smith March 13, 1998

GAMMA GARP
Pulses & Pulse Cycles Chapter Contents

104
7.2

7.4 Access Functions

74.1 channel

Usage:

#include <PulGARP.h>
String GARP::channel()

Description:

The function channel returns a string indicating the isotope channel GARP is applied on.
Return Value:

The function returns a string.

Example:
#include <PulGARP.h>
GARP GP(600.0, “13C"); Il GARP Parameters
cout << “\n\tGARP Decouple On “ // Output channel
<< GP.channel();
See Also:

74.2 strength

Usage:

#include <PulGARP.h>
double GARP::strength()

Description:

The function strength returns the value of the rf-field amplitude used in GARP (in Hz).
Return Value:

The function returns a double.

Example:
#include <PulGARP.h>
GARP GP(600.0, “13C"); Il GARP Parameters
cout << “\n\tGARP Field Strength Is “ // Output rf strength
<< GP.strength() << “ Hz"; /I (will be 600 Hz of course)
See Also:
74.3 phase

Scott Smith March 13, 1998

GAMMA GARP 105
Pulses & Pulse Cycles Chapter Contents 7.2

Usage:

#include <PulGARP.h>
double GARP::phase()

Description:

The function phase returns the value of the rf-field phase used for GARP in degrees.
Return Value:

The function returns a double.

Example:
#include <PulGARPh>
GARP GP, I/ Declare GARP Parameters
GP.read(“filein.pset”) / Read in GARP Parameters
cout << “\n\tGARP Phase Is “ // Output (overall) rf phase

<< GP.phase() << “ degrees”;
744 offset
Usage:

#include <PulGARP.h>
double GARP::offset()

Description:

The function offset returns the value of the rf-field offset used for GARPin Hz.
Return Value:

The function returns a double.

Example:
#include <PulGARP.h>
GARP GP; I/l Declare GARP Parameters
GP.read(“filein.pset”) / Read in GARP Parameters
cout << “\n\tGARP Offset Is “ // Output rf offset

<< GP.offset() << “ Hz";

Scott Smith March 13, 1998

GAMMA GARP 106
Pulses & Pulse Cycles Chapter Contents 7.2

7.5 GARP-1 Functions

75.1 WF
752 WF_GARP1

Usage:

#include <PulGARP.h>
PulWaveform GARP::WF()
PulWaveform GARP::WF_GARPL1()

Description:

The GARP member functions WF and WF_GARP1 both return the 25 step GARP-1 waveform.
Return Value:

A 25 step GARP-1 pulse waveformis returned.

Example:
#include <PulGARP.h>
GARP GP; I/l Declare GARP Parameters
GP.read(“filein.pset”) / Read in GARP Parameters
PulWaveform GWF = GP.WF(); Il Make GARP waveform (GARP-1)

See Also: PCmp, CycGARP1
7.5.3 PCmp
754 PCmpGARP1

Usage:

#include <PulGARP.h>
PulComposite GARP::PCmp(const spin_system& sys)
PulComposite GARP::PCmpGARP1(const spin_systemé& sys)

Description:

The GARP member functions PCmp and PCmpGARP1 both return the 25 step GARP-1 composite pulse for
the input spin system sys.

Return Value:

A 25 step GARP-1 composite pulse is returned.
Example:

spin_system sys; /I Declare a spin system
sys.read(“filein.sys”); /l Read in the spin system

Scott Smith March 13, 1998

GAMMA GARP
Pulses & Pulse Cycles Chapter Contents

107
7.2

GARP GP;

GP.read(“filein.pset”)

PulComposite GCP = GP.PCmp(sys);
See Also: WF, CycGARP1

755 CycGARP1

Usage:
#include <PulGARP.h>

PulCycle GARP::CycGARP1(const spin_system& sys)

Description:

/| Declare GARP Parameters
/l Read in GARP Parameters
/I GARP composite pulse(GARP-1)

The GARP member function CycGARPL1 returns apul se cycle using the 25 step GARP-1 pul se sequence cou-

pled to aWALTZ-4 cycle.
Return Value:

A GARP-1 pulse cycleis returned.
Example:

spin_system sys;

sys.read(“filein.sys”);

GARP GP;

GP.read(“filein.pset”)

PulCycle GCy = GP.CycGARP1(sys);
See Also: WF, PCmp

Scott Smith

/[Declare a spin system
/I Read in the spin system
/I Declare GARP Parameters
/ Read in GARP Parameters
/I GARP-1 pulse cycle

March 13, 1998

GAMMA GARP 108
Pulses & Pulse Cycles Chapter Contents 7.2

7.6 Propagator Functions

76.1 GetU

Usage:
#include <PulGARP.h>
gen_op GetU(i)
Description:
The function GetU will return the propagator which is active during step i of the pul se waveform. The Hamil-

tonian returned is defined in the rotating frame of the pulse waveform and contains contributions from the
pulse waveform rf-field and the isotropic static Hamiltonian.

Return Value:

The function returns an operator.

Example:
#include <PulGARP.h>
doubletp = 0.01; /I Set pulse length to 10 ms
int N = 1001, /I Set number of stepsto 1001
See Also:

Scott Smith March 13, 1998

GAMMA GARP
Pulses & Pulse Cycles Chapter Contents

109
7.2

7.7 Input/Output Functions

7.7.1 printBase

Usage:

#include <PulGARP.h>
ostr printBase(ostream& ostr)

Description:

Thefunction printBasewill put information regarding the GARP parametersinto the output stream ostr given

as an input argument. The function will have less embellishment than the similar function print.

Return Value:

The function modifies the output stream and returns it.

Example:

GARP GP;
GP.read(“filein.pset”);
GP.print(cout);

See Also: print, <<

1.7.2 print

Usage:

#include <PulGARP.h>
ostr print(ostream& ostr)

Description:

The function print will put information regarding the GARP parameters into the output stream ostr given as

an input argument.
Return Value:

The function modifies the output stream and returns it.

Example:

GARP GP;
GP.read(“filein.pset”);
GP.print(cout);

See Also: printBase, <<

7.7.3 <<

Scott Smith

March 13, 1998

GAMMA GARP 110
Pulses & Pulse Cycles Chapter Contents 7.2

Usage:

#include <PulGARP.h>
ostream& operator << (ostream& ostr, PUIGARP& PG)

Description:
The operator << adds the GARP parameters specified as an argument PG to the output stream ostr.
Return Value:
None.
Example:
Garp GP;
GP.read(“filein.pset”);
cout << GP;
See Also: print, printBase

Scott Smith March 13, 1998

GAMMA GARP 111
Pulses & Pulse Cycles Chapter Contents 7.2

7.8 Auxiliary Functions

781 channel

Usage:

#include <PulGARP.h>
String PUlGARP::channel()

Description:

The function channel returns a string indicating the isotope channel the pulse waveform is applied on.
Return Value:

The function returns a string.

Example:
#include <PUulGARPh>
PulGARP PW = GARP(600.0, “13C"); /I GARP-1 Waveform

cout << “\n\tGARP Decouple On “ << PW.channel();// Output channel
See Also:

71.8.2 steps

Usage:

#include <PulGARP.h>
int PUIGARP::steps()

Description:

The function steps returns the number of individual steps defined in the pulse waveform.
Return Value:

The function returns an integer.

Example:

#include <PulGARP.h>
See Also:

7.8.3 cycles

Usage:

#include <PulGARP.h>
int PUIGARP::cycles()

Scott Smith March 13, 1998

GAMMA GARP 112
Pulses & Pulse Cycles Chapter Contents 7.2

Description:
The function cycles returns the number of individual cycle steps defined in the pul se waveform.

Return Value:

The function returns an integer.
Example:

#include <PulGARPh>
See Also:

7.8.4 name

Usage:

#include <PulGARP.h>
String PUlGARP::name()

Description:
The function name returns the name of the pulse waveform.

Return Value:

The function returns a string.
Example:

7.85 values

Usage:

#include <PulGARP.h>
row_vector PUIGARP::values()

Description:

The function values returns arow_vector containing values which define the pulse waveform steps. Theith
vector value contains the values { yB1, ¢}, where the real component is the rf-field strength in Hz, and the
imaginary component is the rf-phase in degrees (or radians).

Return Value:

The function returns arow vector.
Example:

#include <PulGARPh>
See Also:

7.8.6 value

Scott Smith March 13, 1998

GAMMA GARP 113
Pulses & Pulse Cycles Chapter Contents 7.2

Usage:

#include <PulGARP.h>
complex PUlGARP::value(int i)

Description:

Thefunction value returns acompex number for the valueswhich define the pulse waveform step i. Thevalue
containsthe number {yB1, ¢}, wheretherea component isthe rf-field strength in Hz, and the imaginary com-
ponent is the rf-phase in degrees (or radians).

Return Value:

The function returns a complex number.

Example:

#include <PulGARPh>
See Also:

7.8.7 phase

Usage:

#include <PulGARP.h>
double PulGARP::phase(int i)

Description:

The function phase returns the value of the rf-field phase at pulse waveform step i in degrees (or radians).
Return Value:

The function returns a double.
7.8.8 strength

Usage:

#include <PulGARP.h>
double PUulGARP::strength(int i)

Description:

The function strength returns the value of the rf-field amplitude at pulse waveform step i in Hz.
Return Value:

The function returns a double.

Example:

#include <PUulGARPh>
See Also:
7.8.9 length

Scott Smith March 13, 1998

GAMMA GARP 114
Pulses & Pulse Cycles Chapter Contents 7.2

Usage:

#include <PulGARP.h>
double PulGARP::length(int i)

Description:

The function length returns the length of th pulse waveform in seconds.
Return Value:

The function returns a double.

Example:

#include <PulGARPh>
See Also:

7.8.10 steplength

Usage:

#include <PulGARP.h>
double PulGARP::steplength(int i)

Description:

The function steplength returns the length of an individual pulse waveform step in seconds.
Return Value:

The function returns a double.

Example:

#include <PulGARPh>
7.8.11 cyclelength

Usage:

#include <PulGARP.h>
double PulGARP::cyclelength(int i)

Description:

The function cyclelength returns the length of the pulse waveform cycle in seconds.
Return Value:

The function returns a double.
Example:

#include <PulGARPh>

Scott Smith March 13, 1998

GAMMA GARP 115
Pulses & Pulse Cycles Chapter Contents 7.2

See Also:
7.8.12 scyclelength

Usage:

#include <PulGARP.h>
double PulGARP::scyclelength(int i)

Description:

The function scyclelength returns the length of th pulse waveform supercycle in seconds.
Return Value:

The function returns adouble.

Example:

#include <PulGARPh>
See Also:

7813 FzZ

Usage:

#include <PulGARP.h>
int PUIGARP::FZ()

Description:

The function FZ returns the z-axis spin operator associated with the pulse waveform. This operator will be
selective for the isotope which the pul se waveform affects.

Return Value:

The function returns an operator.

Example:

#include <PulGARPh>
See Also:

Scott Smith March 13, 1998

GAMMA GARP 116
Pulses & Pulse Cycles Chapter Contents 7.2

7.9 Description

7.9.1 Introduction

Thefunctionsin module PulGARP and Class GARP (contained in module PulGARP), isdesigned

to facilitate the use of GARP! pulsetrainsin GAMMA NMR simulation programs. In GAMMA,
asinan NMR experiment, we should liketo use GARP pulsetrainsasindividual stepsin ageneral
pulse sequence, including use in variable delays as part of multi-dimensional experiments and/or
use in pulse trains during acquisition steps.

7.9.2 GARP Parameters

A variable of type GARP contains only primitive parameters. e consider a pulse waveform asin-
volving four basic features: 1.) A # steps, 2.) Anrf-field strength, 3.) Anrf-phase4.) Anrf-offset.
These value can be used to completely determine how to set up composite pul ses such asthat used
inaGARP-1 pulse train.

7.9.3 Basic GARP Waveform

GARP sequences are based on a 25 step composite pulse. The pulses are applied with the same rf-
strength but vary in their applied length and oscillate phase between @ and @+1t The details are
shown in the following figure.

Basic GARP 25 Sep Sequence

Step | Angle||Step | Angle|| Step | Angle
1 | 305 9 [1345(17 | 258.4
2 | 552 10 | 256.1]| 18 | 64.9
3 |2578| 11 | 66.4 | 19 | 70.9
4 12683| 12 | 459| 20 | 77.2
5 1693 13| 2551 21 | 98.2
6 | 622 | 14 | 727 || 22 | 133.6
7 | 850 | 15 | 119.5]| 23 | 255.9
8 | 91.8 || 16 | 138.2|| 24 | 65.6
25 | 534

Figure 7-1 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with
a 180 degree phase shift, as indicate by a bar in the table listing. The program which produced this
plot can be found at the end of this chapter, GarpWFO0.cc on page 130.

1. For information on GARP see the article by Shaka, Barker and Freeman in J. Magn. Reson., 64, 547-552
(85). GARP = Globally optimized Alternating-phase Rectangular Pulses.

Scott Smith March 13, 1998

GAMMA GARP 117
Pulses & Pulse Cycles Chapter Contents 7.2

7.9.4 GARP-1 Pulse Cycle

The GARP-1 decoupling sequence repeatedly usesthe GARP 25 step composite pul se but changes
the overall phase inaWALTZ-4 . Thusfor GARP-1 we have

GARP-1 Decoupling Sequence

R R R R

W

Figure 7-1 The GARP-1 decoupling sequence. Each 25-step GARP waveform is repeated with the
4-step phase adjustment overlaid: 0, 180, 180, 0. These are designated R, R, R, R respectively.
The 4 waveforms (100 steps) of GARP-1 are repeated as long as the decoupling sequence is ap-
plied.

The GARP 25-step waveforms (composite pulses) are continuously applied with the same rf-
strength but will change phase between @ and @+1t Asistypical in such sequence, the cycle phases
are changed in a4-step sequence: 0, 180, 180, 0. Thusthe first and last 25 steps of the GARP-1
cycle will be identical aswill the second and third 25 steps. But these two types are 180 degrees
out of phase.

Scott Smith March 13, 1998

GAMMA GARP 118
Pulses & Pulse Cycles GARP Parameters 7.10

7.10 GARP Parameters

This section describes how an ASCI| file may be constructed that is self readable by a GARP vari-

able. The file can be created with an editor of the users choosing and is read with the GARP mem-

ber function “read”. This provides for an extremely flexible and program independent means of
implementing GARP in NMR simulations.

The GARP (ASCII) input file is scanned for the specific parameters which specify the pulse-delay
parameters delay length, rf-length, rf-strength, rf-phase, rf-offset, pulse angle, and the number of
GARRP step. These parameters are recognized by certain keywords, as shown in the following table.

Table 2: Spin System Parameters

Parameter | Assumed Examples
Keyword Units Parameter (Type) : Value - Statement

GARPgamB1 Hz GARPgamB1 (1) : 600.0 - Field Strength (Hz)

GARPIisO none GARPiso (2) : 19F - GARP rf pulse channel
GARPphi degrees| GARPphi 1):2.0 - GARP rf phase (deg)
GARPstps none GARPstps (0):20 - GARP pulse-delay steps

The order in which these parameters reside in the ASCII file is of no consequence.

The format of each parameter is quite simple and general for all GAMMA parameters. At the be-
ginning of a line the parameter keyword is written followed by an optional index number in paren-
thesis. This is then followed by one or more blanks and then an integer in parentheses. The integer
corresponds to the type of parameter value: 0 = integer, 1 = floating point, or 2 = string. Following
the parenthesis should be at least one blank then a colon to indicate the parameter value follows.
The parameter value is then written followed by some blanks then a hyphen followed by an option-
al comment.

There is one major restriction; keywords and string parameters cannot contain blanks. For exam-
ple, v (0) is unknown, v(0) is. The string value 19 F is unknown, 19F is fine. If multiple GARP
pulse-delay steps need to be defined in the same file then simply put an index on all parameters
associated with a desired GARP and read the parameters using that index.

To read the file, see the documentation for function read (or ask-read). There is also an example
program readsystem.cc provide at the end of this Chapter which should indicate how the file is
read. Each of the possible spin system input parameters is now described in more detail.

1. Note that the ASCI|I file must contain viable parametersin GAMMA format. Indeed, thefileisaGAMMA
parameter set and, as such, may contain any amount of additional information along with the valid GARP
parameters.

Scott Smith March 13, 1998

GAMMA GARP 119
Pulses & Pulse Cycles GARP Parameters 7.10

Channdl: GARPiso

This parameter is optional. It will define which isotope channel the GARP rf-pulse will be applied on. If no
channel is specified GAMMA will assume that all spinsin the system being treated are affected by the rf.
Thusif no channel is specified and GARP is utilized in an NMR simulation the system should be homo-nu-
clear or the same GARP should be desired on all channels (same offset, phase, etc.)

Channel: GARPphi

This parameter is optional. It will define the rf-phase of the GARP pulse. If no phaseis specified it will be
taken to be zero.

Pulse Length: GARPtp

The parameters { GARPang, GARPgamB1, GARPtp } work together. GARPtp will set the pulse length if
either GARPang and/or GARPgamB1 have al so been specified. If only GARPtp has been specified amongst
the three an error will result when reading these parameters to define GARP.

Pulse Strength: GARPgamB1
The parameters { GARPang, GARPgamB1, GARPtp } work together. GARPgamB1 se the pulse strength if
either GARPang or GARPgamB 1 have also been specified. If only GARPgamB1 is specified amongst the

three an error will result when reading these parameters to define GARP . If all three parameters have been
specified then GARPgamB1 will be ignored, the strength set by { GARPang, GARPtp }

Sync Frequency: GARPF
This parameter setsthe GARP frequency, i.e. the pulse-delay repetition rate. Thus, users may specify the spe-

cific frequency that GARP will affect the strongest. The parameter will override any delay time set by the
parameter GARPtp. The combined length of the GARP pulse and delay will be set to I/GARPF.

Delay Length: GARPtp

This parameter sets the GARP delay length, independent of the GARP pulse length. If GARPF exists then
this parameter will not be used.

Scott Smith March 13, 1998

GAMMA GARP 120
Pulses & Pulse Cycles GARP Parameters 7.10

7.11 GARP Examples

7.11.1 Reading GARP Parameters

To keep GAMMA programs using GARP sequences versatile, users will want to keep all GARP
specifications undetermined in the code. Asthe program runs, GARP settings are either specified
interactively and/or read in from an external ASCII (parameter) file. This section gives examples
of the latter case. The figure below shows an ASCII parameter file on the left and some GAMMA
program code on the right.

Reading GARP Parameters

GARPphi (1):90.0 - GARP overall rf-phase (deg) GARP GP; /I Declare GARP parameters
GARPiso (2):1H - GARP pulse channel GP.read(“"GARP.pset”); /I Read GARP from file
GARPgamB1 (1):983.0 - GARP pulse strength (Hz)

GP.ask_read(argc, argv, 1); /l Read GARP from file

Figure 7-2 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with
a 180 degree phase shift, as indicate by a bar in the table listing. The program which produced this
plot can be found at the end of this chapter, GarpWFO0.cc on page 130.

The ASCII parameter file (on the left) is taken to be called “GARP.pset” and is read in by the pro-
gram code. Thus one can change the GARP parameters independent of the GAMMA code. The
ASCII file format is typical of GAMMA parameter sets: The line ordering is of no consequence,
the column spacing is not important, the end “- comments” can be left off, and additional lines of
text or parameters may be included.

The GAMMA code is color coded with the parameters they read in the previous figure. Thus the
second line (blue) will read the blue parameters and set up GARP with a strength of 983 Hz on the
proton channel with an overall phase of 90 degrees. Similarly, the next line (green) will read the
parameters colored green from the same ASCII file but sets up GARP with a strength of 2.0459
kHz on the 19F channel (no phase, no offset).

The next line will interactively ask the user to supply a filename where the program can get to
GARP parameters. This filename (in this case “GARP.pset”) will be prompted for unless the user
specifies the file on the command line when the program is executed. The following line does the
same but reads the GARP parameters indexed with a “3” from the file.

Using a combination of these commands, the user has complete flexibility in defining one or more
GARP sequences in the same GAMMA program. The GARP parameters can be easily changed by
either changing their values in the ASCII file and/or changing the filename given to the program.
See the section of GARP parameters to see which parameters can be used in setting up GARP se-
guences. See the other programs in this chapter for full examples GAMMA programs using them.

Scott Smith March 13, 1998

GAMMA

GARP
GARP Parameters

121
7.10

7.11.2 GARP-1 Decoupling

In this section we shall produce asimple 1D NMR spectrum under
GARP-1 decoupling. A hard 90 pulse will be applied to a chosen
spin system on the acquisition channel. Then GARP-1 will be ap-

plied on the decoupler channel during acquisition. The resulting

FID will be apodized and Fourier transformed, the NMR spectrum
put on screen using Gnuplot. Note that relaxation and exchange ef -

fectswill beignored in this simulation. The code for smple
GARP-1 decoupling is shown below:

/* GARPdeCOCC kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkk
*%

*x GAMMA Decoupling Example Program

*%

** This program uses the class GARP to perform a simple decoupling
** simulation. A hard ideal pulse will be applied to an input spin

** gsystem. Subsequently, an acquisition will be performed with GARP-1

** decoupling applied on a specified channel.

kkkkkkkkkkkkkkkkkkkkkkkk kk

*%
*%
*%
*%
**
*%
*%
*%

query_parameter(argc, argv, gn++,
“\n\tDetection Isotope? “, IsoD);
double SW;
query_parameter(argc, argv, gn++,
“\n\tSpectral Width (Hz)? “, SW);
int npts = 1024;
query_parameter(argc, argv, qn++,
“\n\tBlock Size? “, npts);
double Iwhh =1.0;
query_parameter(argc, argv, qn++,
“\n\tApodization (Hz)? “, lwhh);
double td = 1/SW;
double R = (lwhh/2)*HZ2RAD;
double tt = (npts-1)*td;
gen_op H = Ho(sys);
gen_op Det = Fm(sys, IsoD);
gen_op sigma0 = sigma_eq(sys);
gen_op sigmap = lypuls(sys,sigma0,lsoD, 90.);

/I ask for detection channel

/I Spectral width
/I Get desired spectral width

/I Block size (must be base 2)
I Get block size

/I Half-height linewidth
/I Ask for apodization strength

/I Set dwell time

/I Set apodization rate

/I Total FID length

/I Set isotropic Hamiltonian

/I Set detection operator to F-
/I Set density mx equilibrium
/I This is 1st 90 pulse

row_vector data = PCyc.FID(npts,td,Det,sigmap); // Perform acquisition under GARP-1

row_vector exp = Exponential(npts,tt,0.0,R,0);
row_vector fidap = product(data,exp);

data = FFT(fidap);

GP_1D("“spec.asc”, data, 0, -SW/2, SW/2);
GP_1Dplot(“spec.gnu”, “spec.asc”);

}

/I Here is an exponential

/I Apodized FID

/I Transformed FID -> spectrum
/I Output ASCII file

/I Plot to screen using Gnuplot

Thefirst half of this program simply sets the parameters up inter-

** Author: S.A. Smith ** ; ;

»Date: . 3/0/93 « actively. N_oteth_at both the spin system and the GARP parameters _

** \l;pdate: g/éa/jas * are contained in the same file who’s name the user must specify.
** \ersion: .5. *x

** Copyright: S. Smith. Modify this program as you see fit for personal ™ The second half of the program does the simulation. The FID is ac-
** use, but you must leave the program intact if redistrubuted * . . . "

ok = quired using the pulse cycle function “FID” and the pulse cycle has

*hkkkkkkhrkkhhhkhkhhhkhkkkikkk *hkkkkkkhrkkhhhhhhhkhhrhdhrrhrhihrrrrkrx *kkkk

w4/ been set to GARP-1. The last few lines apodize and transform the
FID then spit the plot out on the screen.

#include <gamma.h>

o Addition of relaxation & exchange effects and/or changing the 1st
main(int argc, char* argv[])

{ pulse to non-ideal will require only minor modifications of a few
cout << “\n\t\\t\tGARP Decoupling\n\n”; lines
intgn=1; /I Query index '

i i ; /l Decl i t . T .
PR /| GARP parametors | The input parameter (ASCII) file is listed on the following page. It

String filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
cout << sys; /I Have a look (for setting SW)
GP.read(filename); /I Read in GARP parameters
PulCycle PCyc = GP.CycGARP1(sys); /I Construct GARP-1 cycle
String IsoD = sys.symbol(0); /I Detection/pulse channel
if(sys.heteronuclear()) /I If heteronuclear system

contains parameters for both the spin system and the GARP set-
tings.

Scott Smith March 13, 1998

GAMMA

GARP
GARP Parameters

122
7.10

Example of a GARP decoupling input file (GARPdec.sys)

13¢ Decoupled Spectrum Using GARP-1

SysName (2) : GARP - Name of the Spin System
NSpins ©0):4 - Number of Spins in the System
Iso(0) (2):1H - Spin Isotope Type
Iso(1) (2):1H - Spin Isotope Type
Iso(2) (2):1H - Spin Isotope Type
Iso(3) (2) : 13C - Spin Isotope Type
v(0) (1) : 105.0 - Chemical Shifts in Hz
v(1) (1) : -174.32 - Chemical Shifts in Hz
v(2) (1):150 - Chemical Shifts in Hz i I
v(3) (1):0.0 - Chemical Shifts in Hz 200 100 o 100 200
J(0,1) (1) :10.0 - Coupling Constants in Hz Figure 7-3 The spectrum produced using the program GARPdec0.cc
J(0,2) (1):7.9 - Coupling Constants in Hz with input parameter file GARPdec.sys. The decoupler was applied to the
J(0,3) (1):22.0 - Coupling Constants in Hz 13C channel with a _1.5 kHz field strength._ Detection was on the proton
3(1,2) (1):2.8 - Coupling Constants in Hz channel. 1K data points were collected using a specFraI width of 500 Hz.
. . The data was processed with a 0.5 Hz line-broadening.
J(1,3) (1) :32.0 - Coupling Constants in Hz
J(2,3) (1):18.3 - Coupling Constants in Hz By either editing the input file or specifying a different input file,
Omega (1) : 400 - Spect. Freq. in MHz (1H based) the spectrum can be radically altered. For example, by setting the
GARRP pulse strength to zero one obtains the following spectrum.
GARPphi D:o - GARP pulse phase (deg) 13
GARPiso (2):13C - GARP pulse channel C Coupled Spectrum, Zero Strength GARP-1
GARPgamB1 (1):1500.0 - GARP pulse strength (Hz)

When the program (GARPdec0.cc) is compiled its execution will
produce a plot on screen if the Gnuplot program is available. As-
suming the executable is called a.out, the following command will
produces a spectrum:

a.out GARPdec.sys 1H 500 1024 .5

The command “a.out” alone will prompt you for input values. Hac
you input the above command (or parameters) the spectrum sho
appear as shown in the following figure.

_JL JLJU

T T T T T

-100 o 200

-200 100

Figure 7-4 Same as previous figure but with no decoupler field strength.

Scott Smith March 13, 1998

GAMMA GARP

GARP Parameters

123
7.10

7.11.3 GARP-1 Decoupling vs. Field

We can readily modify the previous program to loop over differing
rf-field strengths and determine how well GARP-1 does as decou-
pling. In this case we will just read in a series of gB1 values from
an external ASCII file and loop over them producing a 1D spec-

String IsoD = sys.symbol(0);
if(sys.heteronuclear())
query_parameter(argc, argv, gn++,

“\n\tDetection Isotope? “, IsoD);

double SW;

query_parameter(argc, argv, gn++,
“\n\tSpectral Width (Hz)? “, SW);

int npts = 1024;

trum at each value. We’'ll spit out all the spectra in a single stacCkuery_parameter(argc, argv, gn++,

plot.

/* GARPdeClCC *kk
*% *%
*x GAMMA Decoupling Test Program *x
*% *%
** This program uses the class GARP to perform a simple decoupling b
** simulation. A hard ideal pulse will be applied to an input spin o
** gystem. Subsequently, an acquisition will be performed with GARP-1 *k
** decoupling applied on a specified channel. *
*% *%*
** Author: S.A. Smith **
** Date: 3/11/98 o
** Update: 3/11/98 **
** \lersion: 3.5.4 *k
** Copyright: S. Smith. You can modify this program as you see fit *
*x for personal use, but you must leave the program intact *k
*x if you re-distribute it. *x
*% *%*

Fkkkkkkk *kk Kkkkkkkk *kk /

#include <gamma.h>
main(int argc, char* argv[])

cout << “\n\t\t\\tGARP Decoupling Vs. Decoupler Strength\n\n”;

intqn=1; /I Query index
spin_system sys; /I Declare a spin system
GARP GP; I/l GARP parameters

String filename;
filename = sys.ask_read(argc,argv,qn++);

/I Input filename
/I Ask for/read in the system

cout << sys; /I Have a look (for setting SW)
GP.read(filename); /I Read in GARP parameters
cout << GP;

PulCycle PCyc;

query_parameter(argc, argv, qn++,
“\n\tFile of Field Strengths? *, filename);

int N;

double* gB1s = GetDoubles(filename, N);

/I Ask for field strength file

/I Number of field strengths
/I Get array of field strengths

Scott Smith

“\n\tBlock Size? “, npts);

double lwhh = 3.0;
query_parameter(argc, argv, gn++,

“\n\tApodization (Hz)? “, lwhh);
double td = 1/SW;
double R = (Iwhh/2)*HZ2RAD;
double tt = (npts-1)*td;
gen_op H = Ho(sys);
gen_op Det = Fm(sys, IsoD);
gen_op sigma0 = sigma_eq(sys);

gen_op sigmap = lypuls(sys,sigma0,lsoD, 90.);

row_vector data, exp, fidap;
matrix datamx(N,npts);
for(int i=0; i<N; i++)

{

GP.strength(gB1s]i]);

PCyc = GP.CycGARP1(sys);

data = PCyc.FID(npts,td,Det,sigmap);
exp = Exponential(npts,tt,0.0,R,0);
fidap = product(data,exp);

data = FFT(fidap);
datamx.put_block(i,0,data);

}
double Nm1 = double(N-1);
String AF(“stk.asc”);
String GF(“stk.gnu”);
GP_stack(AF, datamx, 0,1,N,0.0,Nm1);
GP_stackplot(GF, AF);
FM_stack(“stk.mif”, datamx, 1.5, 1.5, 1);
}

/I Detection/pulse channel
/I If heteronuclear system
Il ask for detection channel

/I Spectral width
/I Get desired spectral width

/I Block size (must be base 2)
/I Get block size

/I Half-height linewidth
/I Ask for apodization strength

/I Set dwell time

/I Set apodization rate

/Il Total FID length

/I Set isotropic Hamiltonian

/I Set detection operator to F-
/I Set density mx equilibrium
/I This is 1st 90 pulse

/I Set GARP field strength
/I Set GARP-1 pulse cycle
/I Perform acquisition

/I Here is an exponential
/I Apodized FID

/I Transformed FID -> spectrum

The modifications from the previous program are obvious. An ex-
ternal ASCI| fileis used to specify alist of decoupler field
strengths and these are read into the program. These fields are

looped over, anew spectrum computed at each decoupler strength.
The spectraare put into amatrix which is given to the Gnupl ot rou-
tinesfor display asastack plot on screen. In addition, the stack plot

March 13, 1998

GAMMA GARP 124
Pulses & Pulse Cycles GARP Parameters 7.10

Isoutput in FrameMaker MIF format for incorporation into documents in an editable form. The
latter is shown in the following figure.

13C GARP-1 Decoupling Versus RF-Field Srength

!

Figure 7-5 Proton spectra produced using the program GARPdecl.cc with input parameter file GARP-
dec.sys and decoupler strength file GARPdecBs. The decoupler was applied to the 13C channel with field
strengths shown. Detection was on the proton channel. 1K data points were collected using a spectral width
of 500 Hz. The data was processed with a 1.0 Hz line-broadening.

When the program (GARPdecl.cc) iscompiled its execution will produce a stack plot on screen if
the Gnuplot programisavailable. Assuming the executableis called a.out, the following command
will produce the plot shown in the previous figure:

a.out GARPdec.sys GARPdecBs 1H 500 1024 1.0

The ASCII file GARPdecBs contains alist of rf-field strengths (in Hz) that the program used. The
file hasasinglefield strength per line and is shown next.

GARP decoupling rf-field input file (GARPdecBs)

0

200
400
600
800

Unlike GAMMA parameter set files (such as GARPdec.sys) thisfileis ssimple ASCII and cannot
have anything other than a single floating point or integer value per line. No additional comments
may be included.

Scott Smith March 13, 1998

GAMMA GARP 125
Pulses & Pulse Cycles GARP Parameters 7.10

7.11.4 GARP-1 Decoupling Profile

In this section we shall attempt to produce a GARP-1 decoupling profile. A hard 90 pulse will be
applied to a simple heteronuclear spin system on the acquisition channel. Then GARP-1 will be
applied on the decoupler channel during acquisition. The resulting FID will be apodized and Fou-
rier transformed. This pulse-delay process will be repeated for differing offsets on the decoupler
channel. Each spectrum will be plotted with its center at the off set frequency to producethe profile.

The really no significant differences between this and our previous calculations. To determine a
profile one uses the simplest spin system (here atwo spin heteronuclear system). The 1D spectrum
Isrecalculated after either moving the decoupler rf offset or, equivalently, moving al decoupler
isotope channel chemical shifts. The spectraare all just put into a single vector, offset so their re-
spective centers are set to be referenced to the decoupler offset value.

For fun, we’ll design the GAMMA program to allow for the reproduction of Fig 1c. (bottom) in
the original GARP-1 publication by Shaka, Barker, and Freeman (page 550). In fact, here are the
GAMMA simulation results.

GARP-1 Decoupling Profile

SysName (2) : GARP - Name of the Spin System
NSpins ©):2 - Number of Spins
I1so(0) (2):1H - Spin Isotope Type
Iso(1) (2):13C - Spin Isotope Type
v(0) (1):0.0 - Chemical Shifts in Hz
v(1) (1):0.0 - Chemical Shifts in Hz
J(0,1) (1) : 221.0 - Coupling Constants in Hz
Omega (1):720 - Spec. Freq. in MHz
GARPphi @:0 - GARP pulse phase (deg)
GARPiso (2):13C - GARP pulse channel
GARPgamB1 (1):2000.0 - GARP pulse strength (Hz)
DA OUAAR A JAUAAAA AU
T T T T T
-4000 -2000 0 2000 4000

Figure 7-6 GARP-1 decoupling profile. Decoupling was performed on the carbon channel in a 13¢.

1H two spin system. The decoupling rf-field strength was set to 2 kHz and the scalar coupling to 221
Hz. A linebroadening of 1.5 Hz was used in processing the spectra. The block size was 1K and the
offset increment set to 200 Hz. These parameters were use to mimic the Shaka et. al paper. The
text at the right is the file which was fed into the simulation program.

The agreement is excellent. The code for a “synchronous” GARP-1 decoupling profile is shown on
the next page. This program sets a spectral width such that acquisition points are taken only after
an even number of GARP-1 cycles (or at least an even number of GARP 25-step waveforms). In
examining the program note that there are very few lines that have much to do with GARP. A quick
replacement of a couple of lines would make this use MLEV or WALTZ or Additionally we
could adjust it let the user select among decoupling sequences. Even better, we can perform a slight
adjustment and include the effects of relaxation and/or exchange.

Scott Smith March 13, 1998

GAMMA GARP

GARP Parameters

126
7.10

B e s e e F*kkkkkkkhkkk

[* GARPprofl.cc ****¥rikx
*%
*x GAMMA Decoupling Test Program

*%

** This program uses the class GARP to perform a simple decoupling

** simulation. A hard ideal pulse will be applied to a simple two spin hetero-
** nuclear system. Subsequently, an acquisition will be performed with

** GARP-1 decoupling applied on one the channel which is not being

** jdetected. This process will be repeated over a range of decoupler offsets.

** The result is a GARP-1 decoupler profile and will be plotted on screen if

** Gnuplot is available on the system. The profile is also output inMIF.
*%

** Author: S.A. Smith
** Date: 3/9/98

** Update: 3/9/98

** \lersion: 3.5.4

*k Copyrlght S. Smith. You can modify this program as you see fit for your
use, but you must leave the program intact if distrubuted.

*%

*kkkkkk

Fkkkkkkk *kk Fkkkkkkk *kk

#include <gamma.h>
main(int argc, char* argv[])

cout << “\n\t\\t\tGARP Decoupling Profile\n\n”;

1 Read In Spin System & GARP Parameters

intgn=1 /I Query index
spin_system sys; /I Declare a spin system
GARP GP; I/l GARP parameters

String filename;

filename = sys.ask_read(argc,argv,qn++);

cout << sys;

if(sys.spins()!=2 || sys.homonuclear())

cout << “\n\tWarning! This program has been”

<< “set up for a two spin heteronuclear”
<< “ system.\n Results on other systems”
<< “can be unpredictable........ "

GP.read(filename); /I Read in GARP parameters

1 Set Acquistion and Profile Parameters

/I Input filename
/I Ask for/read in the system
/I Have a look (for setting SW)

String IsoD = sys.symbol(0);
String IsoG = GP.channel();

/I Detection/pulse channel
/I Decoupler channel

if(IsoD == IsoG) /I Try and set channel to
IsoD = sys.symbol(1); /I not be the decoupling one
double SW; /I Spectral width

query_parameter(argc, argv, gn++,
“\n\tSpectral Width (Hz)? “, SW);

int npts = 1024;

query_parameter(argc, argv, qn++,

/I Get desired spectral width

/I Block size (must be base 2)
I/l Get block size

Scott Smith

“\n\tBlock Size? *,
double lwhh = 3.0;
query_parameter(argc, argv, gn++,
“\n\tApodization (Hz)? “, lwhh);
int NO = 30;
query_parameter(argc, argv, gn++,

npts);

/I Half-height linewidth
/I Ask for apodization strength

I # Of Offsets (on each side)
/I Get # offsets

“\n\tNumber of Positive Decoupler Offsets? “, NO);

double offset;
query_parameter(argc, argv, gn++,
“\n\tDecoupler Offset Per Step (Hz)? *,

offset);

Il Get # offsets

1 Set Up Variables Consistent Through All Offsets

double R = (Iwhh/2)*HZ2RAD;
gen_op Det = Fm(sys, IsoD);
gen_op sigma0 = sigma_eq(sys);
gen_op sigmap =
row_vector data(npts);

lypuls(sys,sigma0,IsoD, 90.);

/I Set apodization rate

/I Set detection operator to F-
/I Set density mx equilibrium
/I This is 90 detection pulse
/I Block for acquisiton

1 Set Up Variables Global Over Full Profile

row_vector profile((2*NO+1)*npts, complex0);
double totaloff = double(NO)*offset;
row_vector fidap;
PulCycle PCyc = GP.CycGARP1(sys);
SW = PCyc.FIDsync(SW);
double td = 1/SW;
double tt = (npts-1)*td;

row_vector exp=XExponential(npts,tt,0.0,R,0);

PCyc.print(cout, 1);

/I Block for profile

/I Total offset at end

/I Block for apodized FID

/l Empty GARP-1 pulse cycle
/I Synchronize dwell times

/I Set dwell time

/Il Total FID length

/I Block for apodization

1 Loop Over Offsets, Calculate Profile

int K =0;
sys.offsetShifts(-NO*offset, 1soG);
for(int ov=-NO; ov<=NO; ov++)

{

PCyc = GP.CycGARP1(sys);

data = PCyc.FID(npts,td,Det,sigmap);
fidap = product(data,exp);

data = FFT(fidap);
profile.put_block(0, K, data);
sys.offsetShifts(offset, 1soG);

K += npts;

}

double F = totaloff + SW/2;
GP_1D(“prof.asc”, profile, 0, -F, F);
GP_1Dplot(“prof.gnu”, “prof.asc”);
FM_1D(“prof.mif", data,14,14,-F, F);

/I Paint index in profile
/I Set 1st profile offset
/I Loop over offsets

Il GARP-1 cycle this offset

/I Acquisition this offset

/I Apodized FID this offset

/I Spectrum this offset

/I Put spectrum in profile

/I Move system to next offset
/I Adjust profile point index

/I Final plot frequency

/I Output profile ASCII data

/I Plot to screen using Gnuplot
/I Plot in FrameMaker MIF

March 13, 1998

GAMMA GARP 127
Pulses & Pulse Cycles GARP Parameters 7.10

7.11.5 GARP-1 Modified Decoupling Profile

Suppose that we wish to follow along with the original GARP publication and reproduce all of the
decoupling profiles simul ated therein. How would we go about doing so? GAMMA buildsup pulse
cycles from a combination of a pulse waveform and a cycle overlay. For GARP-1 thereis afunc-
tion supplied in this module (PulGarp) which simply returns a pulse cycle based on the 25-step
GARP waveform and the 4-step RRRR cycle. For decoupling sequences which are not available
through an existing GAMMA function the user can simply build hig’her own.

Let’s consider the “90%” GARP-1 simulation in the paper (Fig. 1c top). This was performed to ex-
amine how well GARP-1 performs when the pulses are inadvertently mis-calibrated. The authors
intentionally set the decoupler field strength to be 90% of what is required for the proper pulse an-
gles in the GARP sequence. To accomplish this in GAMMA we will modify the previous simula-
tion by explicitly building our own (bad) GARP-1 pulse cycle. Rather that use the provided GARP-

1 function, we will just scale the provided GARP waveform rf-field strength by 90% then build a
modified GARP-1 pulse cycle with the scaled waveform. Everything else will be very much the
same, i.e the same input values and the same input file. For convenience we will add an interactive
request for the scaling factor (which will be set to 0.90 to reproduce the paper simulation).

First the simulation output.
GARP-1 90% RF-Power Decoupling Profile

JULULJbeJUUUJUJLJLLUbUbLbUULJJJLUUUbbJUULJUUUJLJUUk

-4000 -2000 o 2000 4000
Figure 7-7 GARP-1 decoupling profile @ 90% RF power. Decoupling was performed on the carbon

channel in a 13C-1H two spin system. The decoupling rf-field strength was set to 2 kHz x 0.90 after
calibrating the pulse lengths for 2 kHz. The scalar coupling to 221 Hz. A linebroadening of 1.5 Hz
was used in processing the spectra. The block size was 1K and the offset increment set to 200 Hz.

Again this is in excellent agreement with the GARP-1 paper. The simulation program is shown on
the following page. | have placed the important code changes in blue so that it is evident how users
can construct their own pulse cycles. | don’t know what the other decoupling sequences are in the
paper cited, so | won’t bother looking at them. You can if you like though. | ran the program with
the command “a.out GARPprof.sys 25 1024 1.5 25 200 0.9” where a.out is the executable.

Scott Smith March 13, 1998

GAMMA

GARP
GARP Parameters

/* GARPprOfZ cc kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkhkkkkhkkhkkkkkkkkkkkkkkkhkkkkk

*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%

** Copyrlght S. Smith. You can modify this program as you see fit for your

*%

GAMMA Decoupling Test Program

This program uses the class GARP to perform a decoupling profile
simulation. A hard ideal pulse will be applied to a simple two

spin heteronuclear system. Subsequently, an acquisition will be
performed with GARP-1 decoupling applied on one the channel which
is not being detected. This process will be repeated over a range

of decoupler offsets. The result is a GARP-1 decoupler profile.

Author: S.A. Smith
Date: 3/9/98
Update: 3/9/98
Version: 3.5.4

use, but you must leave the program intact if distrubuted.

*%
*%
*%

*%

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkhkkkhkkkkkkkk */

#include <gamma.h>

main(int argc, char* argv[])

cout << “\n\t\t\\tGARP Decoupling Profile\n\n";

1 Read In Spin System & GARP Parameters

intgn=1 /I Query index
spin_system sys; /I Declare a spin system
GARP GP; I/l GARP parameters

String filename;
filename = sys.ask_read(argc,argv,qn++);
cout << sys;

/I Input filename
/I Ask for/read in the system
/I Have a look (for setting SW)

if(sys.spins()!=2 || sys.homonuclear())

GP.read(filename);

I

String IsoD = sys.symbol(0);

String 1IsoG = GP.channel();
double SW;
query_parameter(argc, argv, qn++,

int npts = 1024;
query_parameter(argc, argv, gn++,

double Iwhh = 3.0;
query_parameter(argc, argv, gqn++,

int NO = 30;

cout << “\n\tWarning! This program has been set up for a two spin heteronuclear ”

<< “ system.\n Results on other systems can be unpredictable........ "
/l Read in GARP parameters

Set Acquistion and Profile Parameters

/I Detection/pulse channel
/I Decoupler channel
/I Spectral width
/I Get desired spectral width
“\n\tSpectral Width (Hz)? “, SW);
/I Block size (must be base 2)
Il Get block size
“\n\tBlock Size? “, npts);
/I Half-height linewidth
/I Ask for apodization strength
“\n\tApodization (Hz)? “, lwhh);
1 # Of Offsets (on each side)

Scott Smith

query_parameter(argc, argv, gn++,
“\n\tNumber of Positive Decoupler Offsets? “,
double offset;

query_parameter(argc, argv, gn++,

“\n\tDecoupler Offset Per Step (Hz)? “, offset);

double gBsf;
query_parameter(argc, argv, gn++,
“\n\tPulse field strength scaling factor? *,

gBsf);

Il Get # offsets

NO);

/I Get offset increment

/I Get rf scaling factor

1 Set Up Variables Consistent Through All Offsets

double R = (Iwhh/2)*HZ2RAD;
gen_op Det = Fm(sys, IsoD);
gen_op sigma0 = sigma_eq(sys);
gen_op sigmap =
row_vector data(npts);

lypuls(sys,sigma0,IsoD, 90.);

/I Set apodization rate

/I Set detection operator to F-
/I Set density mx equilibrium
/I This is 90 detection pulse
/I Block for acquisiton

1 Set Up Variables Global Over Full Profile

row_vector profile((2*NO+1)*npts, complex0);
double totaloff = double(NO)*offset;
row_vector fidap;

Pulwaveform PWF = GP.WF();
PWF.scalegB1(gBsf);

PulComposite Pcmp(PWF, sys, GP.channel());
row_vector cyc = CYC_WALTZA4();

String cycname = “GARP-1 scaled”;

PulCycle PCyc(Pcmp, cyc, cycname);

SW = PCyc.FIDsync(SW);

double td = 1/SW;

double tt = (npts-1)*td,;

row_vector exp=XExponential(npts,tt,0.0,R,0);

/I Block for profile

/I Total offset at end

/I Block for apodized FID
/I GARP 25 step waveform
/I Scale pulse waveform

/I WALTZ-4 cycle overlay
/I Modified cycle name

/I Modified GARP-1 cycle
/I Synchronize dwell times
/I Set dwell time

/l Total FID length

/I Block for apodization

1 Loop Over Offsets, Calculate Profile

int K =0;
sys.offsetShifts(-NO*offset, 1soG);
for(int ov=-NO; ov<=NO; ov++)

/I Paint index in profile
/I Set 1st profile offset
/I Loop over offsets

Pcmp = PulComposite(PWF, sys, GP.channel());// Reset GARP composite pulse

PCyc = PulCycle(Pcmp, cyc, cycname);
data = PCyc.FID(npts,td,Det,sigmap);
fidap = product(data,exp);

data = FFT(fidap);

profile.put_block(0, K, data);
sys.offsetShifts(offset, IsoG);

K += npts;

}
double F = totaloff + SW/2;
GP_1D(“prof.asc”, profile, 0, -F, F);
GP_1Dplot(“prof.gnu”, “prof.asc”);
FM_1D(“prof.mif", profile ,14,14,-F, F);

/I Reset modified GARP-1 cycle
/I Acquisition this offset

/I Apodized FID this offset

/I Spectrum this offset

/I Put spectrum in profile

/I Move system to next offset

/I Adjust profile point index

/I Final plot frequency

/I Output profile ASCII data

/I Plot to screen using Gnuplot
/I Plot in FrameMaker MIF

March 13, 1998

GAMMA GARP 129
Pulses & Pulse Cycles GARP Parameters 7.10

7.11.6 GARP Decoupling With Relaxation

Now lets do something a bit more exotic with GAMMA and GARP. Herewe will add in the effects
of relaxation while the decoupler ison. Since we already have a program that simulates GARP-1
decoupled spectra(GARPdecl.cc) without rel axation, we need only makethe proper modifications
to that program and itsinput in order to obtain the simulation we want.

Lets review a few of basic changes we’ll need. First, rather than working with an isotropic spin
system (spin_system) in our program, we need to work with a oriented spin system that is moving
isotropically. That is, a spin system that keeps track of dipolar, CSA, and quadrupolar tensors for
all spins or spin-pairs. Thus we need to repspoe_system with sys dynamic. Second, when the
system is read in from an external ASCII file it will look for tensor quantities as well as dynamical
values (correlation times). Next we will have to create a relaxation matrix and Liouvillian that de-
fines how the system evolves. And lastly, we’ll have to use an FID function that includes that
evolves under the defined Liouvillian so that relaxation (and exchange) are accounted for.

Now that all might sound rather complicated, but it actually requires only minor adjustments to the
program we already have at our disposal. Have a look. The code on the left was clipped out of the
program GARPdecO0.cc covered earlier in this chapter and the code on the right the modifications
we need to include relaxation effects. I've left out some of the comments.

spin_system sys; /I 1sotropic spin system sys_dynamic sys; /I New system type
gen_op H = Ho(sys); /I 1sotropic Hamiltonian gen_op H = Ho(sys); /I Isotropic Hamiltonian
. super_op L = RDD(sys,H); /I Dipolar relaxation.
i3uICycIe PCyc = GP.CycGARP1(sys); buICycIe PCyc = GP.CycGARP1(sys, L);

.row_vector data = PCyc.FID(npts,td,Det,sigmap); ;'ow_vector data = PCyc.FIDR(npts,td,Det,sigmap);

Now that wasn't so bad was it? We generate a dipole-dipole relaxation superoperator, called “L”
in the above code, and include it in the function calls which generate the GARP pulse cycle. Then
we call an FID function which will include relaxation effects. Keep in mind that L resides in spin
Liouville space and is typically big. Running decoupling on 5 spins will take a while and it gets
worse the larger the spin system. It is a “Redfield” relaxation superoperator dealing with coupled
relaxation effects (and not just longitudinal relaxation either...).

Now on to our program. The following page contains the modifications shown. | do build “L” in a
different fashion than indicated above so that | can include multiple relaxation effects and ex-
change if | desire, rather than just setting it to only dipolar relaxation. This will become a little more
clear when you look at the simulation outpetsus the input ASCII parameter file........

Scott Smith March 13, 1998

GAMMA GARP
Pulses & Pulse Cycles GARP Parameters

130
7.10

7.12 Chapter Source Codes

GarpWFO0.cc

[* GarpWFO0.cc
*%
*k GAMMA GARP Simulation Example Program

*%

** This program examines the basic GARP sequence Waveform. | does no

* NMR computations involving GARP, it merely spits out plots so that
** the default GARP (GARP-1) sequence can be readily viewed.
*%

** Assuming a.out is the executable of this program, then the following
** command will generate a single 25 step GARP-1 waveform which will
** he displayed on screen if Gnuplot is available. It will also make

** an editable FrameMaker MIF file of the waveform.

*%

xx a.out

*%

** Author: S.A. Smith

** Date: 2/27/98

** Copyright: S.A. Smith, February 1998
*%

Fkkkkkkk Fokkkokk

#include <gamma.h> /I Include GAMMA
main(int argc, char* argv[])

cout << “\nN\n\\W\tGAMMA GARP Waveform Program 0\n”;

GARP GP(500.0, “1H"); /I Set GARP parameters
Pulwaveform PWF = GP.WF_GARP1(); /I Construct waveform
PWF.GP(1, 1, 5); /I Plot waveform(s), gnuplot
PWF.FM(1, 1, 5); /I Plot waveform(s), Framemaker
cout << “\n\n”; /I Keep screen nice

}

Scott Smith

*%
K%
**
*%
*%

*%
*%
*%
**
*%
*%
*%
**
*%
*%
*%
**
*%
**/

March 13, 1998

	7 GARP
	7.1 Overview
	7.2 Chapter Contents
	7.2.1 GARP Section Listing
	7.2.2 GARP Function Listing

	GARP-1 Functions
	Access Functions
	GARP-1 Functions
	Input/Output Functions
	7.2.3 GARP Figures & Tables Listing
	7.2.4 GARP Examples
	7.2.5 GARP Programs

	7.3 Constructors and Assignment
	7.3.1 GARP
	Usage:
	Description:
	1. PulGARP() - Creates an “empty” NULL GARP parameter. Can be later filled by an assignment.
	2. PulGARP(double gB1, const& ch, double ph, double off) - Sets up GARP for having an rf-field st...
	3. PulGARP(const PulGARP &PWF1) - Called with another PulGARP quantity this function constructs a...

	Return Value:
	Examples:
	See Also: =
	7.3.2 =

	Usage:
	Description:
	Return Value:
	Example:
	See Also: PulGARP

	7.4 Access Functions
	7.4.1 channel
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.4.2 strength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.4.3 phase

	Usage:
	Description:
	Return Value:
	Example:
	7.4.4 offset

	Usage:
	Description:
	Return Value:
	Example:

	7.5 GARP-1 Functions
	7.5.1 WF
	7.5.2 WF_GARP1
	Usage:
	Description:
	Return Value:
	Example:
	See Also: PCmp, CycGARP1
	7.5.3 PCmp
	7.5.4 PCmpGARP1

	Usage:
	Description:
	Return Value:
	Example:
	See Also: WF, CycGARP1
	7.5.5 CycGARP1

	Usage:
	Description:
	Return Value:
	Example:
	See Also: WF, PCmp

	7.6 Propagator Functions
	7.6.1 GetU
	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	7.7 Input/Output Functions
	7.7.1 printBase
	Usage:
	Description:
	Return Value:
	Example:
	See Also: print, <<
	7.7.2 print

	Usage:
	Description:
	Return Value:
	Example:
	See Also: printBase, <<
	7.7.3 <<

	Usage:
	Description:
	Return Value:
	Example:
	See Also: print, printBase

	7.8 Auxiliary Functions
	7.8.1 channel
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.2 steps

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.3 cycles

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.4 name

	Usage:
	Description:
	Return Value:
	Example:
	7.8.5 values

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.6 value

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.7 phase

	Usage:
	Description:
	Return Value:
	7.8.8 strength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.9 length

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.10 steplength

	Usage:
	Description:
	Return Value:
	Example:
	7.8.11 cyclelength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.12 scyclelength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.13 FZ

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	7.9 Description
	7.9.1 Introduction
	7.9.2 GARP Parameters
	7.9.3 Basic GARP Waveform
	Basic GARP 25 Step Sequence
	1
	30.5
	9
	134.5
	17
	258.4
	2
	55.2
	10
	256.1
	18
	64.9
	3
	257.8
	11
	66.4
	19
	70.9
	4
	268.3
	12
	45.9
	20
	77.2
	5
	69.3
	13
	25.5
	21
	98.2
	6
	62.2
	14
	72.7
	22
	133.6
	7
	85.0
	15
	119.5
	23
	255.9
	8
	91.8
	16
	138.2
	24
	65.6
	25
	53.4
	Figure 7-1 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with a...
	7.9.4 GARP-1 Pulse Cycle

	GARP-1 Decoupling Sequence
	Figure 7-1 The GARP-1 decoupling sequence. Each 25-step GARP waveform is repeated with the 4-step...
	7.10 GARP Parameters
	Table 2: Spin System Parameters

	GARPgamB1
	Hz
	GARPiso
	none
	GARPphi
	degrees
	GARPstps
	none
	Channel: GARPiso
	Channel: GARPphi
	Pulse Length: GARPtp
	Pulse Strength: GARPgamB1
	Sync Frequency: GARPF
	Delay Length: GARPtp

	7.11 GARP Examples
	7.11.1 Reading GARP Parameters
	Reading GARP Parameters
	Figure 7-2 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with a...
	7.11.2 GARP-1 Decoupling
	a.out GARPdec.sys 1H 500 1024 .5

	13C Decoupled Spectrum Using GARP-1
	Figure 7-3 The spectrum produced using the program GARPdec0.cc with input parameter file GARPdec....

	13C Coupled Spectrum, Zero Strength GARP-1
	Figure 7-4 Same as previous figure but with no decoupler field strength.
	7.11.3 GARP-1 Decoupling vs. Field

	13C GARP-1 Decoupling Versus RF-Field Strength
	Figure 7-5 Proton spectra produced using the program GARPdec1.cc with input parameter file GARPde...
	a.out GARPdec.sys GARPdecBs 1H 500 1024 1.0
	7.11.4 GARP-1 Decoupling Profile

	GARP-1 Decoupling Profile
	Figure 7-6 GARP-1 decoupling profile. Decoupling was performed on the carbon channel in a 13C- 1H...
	7.11.5 GARP-1 Modified Decoupling Profile

	GARP-1 90% RF-Power Decoupling Profile
	Figure 7-7 GARP-1 decoupling profile @ 90% RF power. Decoupling was performed on the carbon chann...
	7.11.6 GARP Decoupling With Relaxation

	7.12 Chapter Source Codes
	GarpWF0.cc

